Federico Zenith

Large-scale hydrogen production from wind power in Arctic conditions
The HÆOLUS project

SINTEF Mathematics & Cybernetics

Nordic Hydrogen & Fuel Cell Conference
October 9, 2018
Reykjavík, Iceland
Outline

Motivation

The Project

Future Perspective
Outline

Motivation

The Project

Future Perspective
Motivation

- EU 2030 target: 27% renewable energy consumption
 - In 2015 it was 13%
 - *Production* is already 26.2% (2015)
 - No renewables in energy imports
- Most renewables produce electricity
- Several are not controllable
- Some are unpredictable
Constraints of Wind Power

- Hard to predict production
- Capacity factor about 33\%
- Need reserve capacity
- Often, good wind power is found where:
 - there is little hydro potential
 - few people live
 - the grid is weak
 - accessibility is difficult
- All this even more true for offshore wind!
The Connection between Hydrogen and Wind

- Beyond 20% wind share, value plummets
 - Gonzalez et al., Ren. Ener., 29.4 (2003), 471–489
- Hydro is rarely possible
- Batteries are too expensive
- Hydrogen has lower efficiency
- IEA’s HIA task 24 identified 3 main cases:
 - Energy storage
 - Mini-grid (e.g. islands)
 - Fuel production
- Grid services, reserves, target matching...

The Utsira, Norway, 50 kW / 215 kg\textsubscript{H\textsubscript{2}} system (2004)
Outline

Motivation

The Project

Future Perspective
The HAEOLUS Project
http://haeolus.eu - @HaeolusProject

• A FCH2 JU Innovation Action
• Objectives:
 – Enable more wind power
 – Test multiple use cases
 – Demonstrate a 2.5 MW system
 – Demonstrate remote operation
 – Report & disseminate
• Key figures:
 – Budget: 6.9 M€ (5 M€ from EU)
 – Time frame 2018–2021
 – Capacity 1 t/d
 – Production start: late summer 2019

Kick-off in Oslo, January 2018
The Wind Park

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW
The Wind Park
Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW
- Capacity factor 50 %
- Local consumption max. 60 MW
- Local economy based on fishing
- Partner operator of park & grid:
 VARANGER KRAFT
The Electrolyser System’s Site
Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- Located beside Berlevåg harbour
- Compact 2.5 MW PEM electrolyser
- 100 kW fuel cell for re-electrification
- New 10 km power line from Raggovidda
- Virtually “inside the fence”
- Accessibility by road or sea
- At least 120 t over 2.5 year
- Partner electrolyser manufacturer:

View of Berlevåg, site highlighted
Grid Services

- Wind energy production target match
 - Currently: prediction outsourced
 - 3rd party paid in % of production
 - Easily quantifiable potential
 - Adjust electrolyser to fulfil target
- Primary, secondary & tertiary reserves
 - Electrolysers are easily ramped
 - Can acquire slots in all reserves
- Project partner:

<table>
<thead>
<tr>
<th>Hour</th>
<th>Price NOK/MW</th>
<th>Volume MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>180</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>139</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>139</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>139</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>17</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Price for primary reserves on October 3, northern Norway.
Other Activities

- Remote operation
 - Relevant for many wind parks
 - Run demonstration from Italy

- Partner software developer:

- System prognostics
 - Reduce on-site inspections
 - Optimise maintenance
 - Avoid unscheduled stops

- Partner university:

- Dynamic modelling
 - Process model & optimisation
 - Control synthesis

- Partner university:

- Control implementation
- Integration with smart grids
- \(\text{H}_2 \) valorisation plan

- Coordinator:
Outline

Motivation

The Project

Future Perspective
Expected Impact
From Short to Long Term

- Convince Varanger Kraft to expand hydrogen production
- Export model to other sites in Europe (other EU projects?)
- Allow deployment of wind power beyond 20 %
- Push hydrogen utilisation in the area
 - Mobility, industry, etc.
- Contribute to EU renewable targets & energy independence
Public Deliverables

Reports (18):

- Raggovidda energy analysis
- Dynamic model & control
- Impact on energy systems, RCS
- Valorisation plan
- Business case analysis
- Road to MAWP 2023 targets
- Techno-economic analysis
- Environmental performance
- Demonstration protocols & data

Other (15):

- Workshop at ECC2019 Naples
- Real-time demo on website
- Plant visit
- Academic seminars
- Student internship
- Presence at industrial fair
What to Do with the Hydrogen?
Valorisation Plan: Identified Opportunities

<table>
<thead>
<tr>
<th>Action</th>
<th>Realism</th>
<th>Size</th>
<th>Gimmick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svalbard energy supply</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coastal ships</td>
<td>(✓)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fishing boats</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ammonia production</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Aquaculture</td>
<td>(✓)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fast passenger boats</td>
<td>(✓)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cars</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Regional mini-buses</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste collection trucks</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backup generators</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowmobiles</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Regional planes</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ZE steel production</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining and ore processing</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Hydrogen can boost wind power
- HAEOLUS will test relevant cases for Europe and beyond
- Many possibilities for hydrogen use—the most promising still to develop, though
Conclusion

- Hydrogen can boost wind power
- HAEOLUS will test relevant cases for Europe and beyond
- Many possibilities for hydrogen use—the most promising still to develop, though

Thank you for your attention!
Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement № 779469.