HYDROGEN IN THE RENEWABLE ENERGY SYSTEM – VIEW FROM AN UTILITY

Oliver Weinmann, Managing Director Vattenfall Europe Innovation

October 9, 2018
The Challenges of the Energy Transition

- **Fossil/Nuclear** to **Renewables**
- **Demand driven** to **Supply driven**
- **Centralized** to **Decentralized**
- **Analog** to **Digital**
Share of renewable Energy Feed-in in the German System

Source: ZSW nach Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat)
Next Steps Energy Transition

• First Step: Quantity
 - Market Introduction RES (low penetration, cost decrease, funding schemes)
 - Focus on electricity

• Next Step: Quantity, Quality and Energy System
 - Further increase share of renewables
 - Manage volatility and flexibility
 - Decarbonization of other energy sectors (sector coupling)
Agenda

1. Energy Transition
 - Renewables growth & cost
 - Volatile Renewable Production
 - Flexibilities & Sector Coupling
2. Conclusions
In 2016, global renewable energy capacity grew 8.7% to more than 2,006 GW

IEA: Since 2015 share of renewables in new installations > 50%
Generation cost - Development Auctions Solar and Wind

PV
- **60 EUR/MWh** (Germany 10 MW)
- **17.9 USD/MWh** (Saudi Arabia 300 MW)

Wind
- **49.9 EUR/MWh** (Denmark 600 MW)
- **37.8 USD/MWh** (Peru 126 MW)
Agenda

1. Energy Transition
2. Renewables growth & cost
3. Volatile Renewable Production
4. Flexibilities & Sector Coupling
5. Conclusions
Challenges of REN Feed-in into the System

Vertical Load, Wind Energy Forecast and Wind Energy Feed-in in East Germany
(1.-30.06.2013, MW)

1. Deviation from forecast
2. Calm
3. Gradient
4. Production > Load

Quelle: 50Hertz Transmission
Cost figures Congestion Management (Germany)

Source: BDEW
Agenda

1. Energy Transition
2. Renewables growth & cost
3. Volatile Renewable Production
4. Flexibilities & Sector Coupling
5. Conclusions
Change from Demand to Supply Driven System

Production

Centralized and Decentralized

2015
Nuclear
Fossil

In future

2030
Wind
Solar

Flexibility options

Network Expansion
Flex. Power Plants
Demand Response
Power to X/
Sector coupling
Electricity Storage

Consumption

Commercial & Industry sector

Transport sector

Residential sector
Energy sectors and sector coupling

- Wind
- Solar
- Hydro
- Biomass

Electricity

- Gas
- Coal
- Nuclear
- Oil

- Heating/Cooling
- Industry
- Transport

- Oil
- Gas
- (Electricity)
Sector Coupling

• **Goals:**
 - Decarbonisation of mobility and heat
 - Implementation of renewable electricity (incl. surplus production) for house heating, industry, and transport.
 - Supply of flexibilities

• **Technologies:**
 - Power to Gas (Hydrogen)
 - Power to Heat

• **Main applications:**
 - Utilization of renewable electricity for heat and transport
 - Supply of ancillary services

HFC Nordic 2018
The role of hydrogen in the energy system

Hydrogen can play 7 roles in the energy transition

1. Enable large-scale renewables integration and power generation
2. Distribute energy across sectors and regions
3. Act as a buffer to increase system resilience
4. Help decarbonize transportation
5. Help decarbonize industrial energy use
6. Help decarbonize building heat and power
7. Serve as renewable feedstock

SOURCE: Hydrogen Council
Hydrogen as transportation fuel

- Hydrogen (power to gas) production with electrolysis can be used to balance volatile production
- Most attractive business case for H2 is transportation fuel
- Vattenfall operates the largest European H2 filling station since 2011 in Hamburg
- H2Mobility builds up refueling infrastructure for H2 vehicles – 400 filling stations until 2023
- Several European cities are interested in H2 busses for public transportation
- Hydrogen fuel cell trains are developed
- Vattenfall currently investigates hydrogen production infrastructure solutions to serve emission free transport on a commercial basis
Availability

- Availability means „ability to refuel“
- Errors in redundant systems irrelevant
Power to Gas at Refineries

- Transportation sector has legal obligations to reduce the CO2 footprint of fuels (e.g., diesel, gasoline)
- CO2 reduction today is done by addition of biofuels
- Huge amounts of hydrogen are needed in the refinery process, today produced by steam reforming of natural gas
- Replacing this hydrogen with green hydrogen (power to gas with renewables, P2G) can deliver CO2 reductions comparable to blending of biofuels
- Business case is achievable since power to gas competes to (expensive) biofuels, not with cheap hydrogen from steam reforming
- Major obstacle: permission to get CO2 reductions credited similar to biofuels not yet in place – regulation needs to be adapted
Power-to-gas – decarbonization of industry

- HYBRIT: Fossil free steel – Cooperation with LKAB and SSAB

- Renewable diesel: from forest to drop-in fuel – Cooperation with Preem
Fossil free steel with SSAB/LKAB

HYBRIT
FOSSIL-FREE STEEL

Iron ore pellets + Hydrogen = Sponge iron + Water

HFC Nordic 2018
HYBRIT pilot plant - the next step

- Pre-engineering and design since January
- Location Luleå & Malmberget
 - Direct reduction: ~1 ton/h DRI
 - H₂: ~600-700 Nm³/h (~3-4 MWₑ)
 - Steel (EAF): ~10 ton/batch
 - H₂ storage: TBD 2019
- Time schedule
 - Start groundwork summer 2018
 - Commissioning early 2020
 - Test campaigns 2020-2024

Total cost 2018-2024 ~150 M€
- Includes CAPEX + OPEX for whole test period
- Co-funded by Swedish Energy Agency (pending)
Fossil free diesel with Preem

Cellulose (fiber)

Lignin

Pre-treatment → Lignin oil → Refining → Diesel (HVO)

Other (energy etc)

Hydrogen

Electricity

2030: 3 Mm3/yr (30 TWh/yr)

HFC Nordic 2018
Conclusions

• Share of renewables will further increase
• Volatile sources like wind and solar will be the dominating power generation in the future
• Besides electricity the energy sectors heat and transport need to be decarbonized as well to fulfill the goals of the Paris COP agreement
• Main source for decarbonization of heat and transport will be renewable electricity.
• Storage and sector coupling will play a more important role in the future
• Today business cases for these systems are only possible in niche applications
• Industry is willing to invest, but for large scale roll out attractive business cases are required:
 - The regulatory and legal framework needs to be adapted to develop economical viable business cases.
 - Cost of storage and sector coupling systems need to decrease
THANK YOU

OLIVER.WEINMANN@VATTENFALL.DE

HFC Nordic 2018